CALCULATING THE CROSS-SECTIONAL TEMPERATURE
PROFILE OF A TUBULAR REACTOR WITH RADIATIVE HEATING
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The cross-sectional temperature profile of a tubular reactor with radiative heating is cal-
culated analytically,

The design of high-temperature chemical reactors is a difficult problem and has not yet been defini-
tively solved to this very day, Essential for calculating the diameter of a reactor tube is the knowledge of
the temperature profile across the tube.

Under conditions of variable thermal conductivity and uniform irradiation of the lateral surface, the
authors attempt here to establish the relation between temperature and tube radius in the case of ‘hydroecar-
bons undergoing pyrolysis. Hydrocarbons undergo pyrolysis at high values of the Reynolds number,

i.e., under turbulence conditions, In view of this, determining the temperature-dependence is closely in-
volved with selecting the proper coefficient of turbulent viscosity. We have made the choice on the basis
of published data [1-10] and assume a radial viscosity profile most closely corresponding to the given pro-
cess,

An analytical solution to the problem is found by dividing the total stream into a laminar sublayer and
a mainstream region, both transfer mechanisms being operative in the latter. The two solutions, separate
for each region, and then smoothly coupled at the edge of the laminar sublayer into a single solution for the
entire tube,

The cross-sectional temperature profile of a tube is defined by the equation
,_i_ . Edr_(x(r)r idf_) g kf(e) =0, | 1)
The process of hydrocarbon pyrolysis is essentially a first-order reaction {11-15] with heat absorp-
tion, i.e,, here
qp = —1q,),  kf(c) = ke. (2)
The temperature-dependence of the coefficient of the reaction rate is determined according to the
Arrhenius equation
k= kyexp(—E/RT), Kk, = const. @)
We factorize the exponent as in [16], i.e,, ,
exp (— E/RT) = exp (— E/RT ) exp (E(T — T)/RT3), (4)
with T denoting the temperature near which the reaction occurs. We then change to dimensionless vari-
ables

® = E(T — T)/RT}, x = r[Rip Ay = Mhy, (5)
and then, with the aid of (2)-(5), Eq. (1) yields
1 d de 8
. A - }J = —exp6, 6
X dx ( (9= dx ) Ay d ©®
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where
8 = |qp | ckyR’ E exp (— E/RT)/RTS.

We next formulate the boundary conditions, Assuming a linear temperature profile in the tube wall* and
considering that the reactant mixture is heated radiatively, we have

_ RT%( Adw de
= TR {[ E \7,Ry i«

N

ART;  dO
E dx

4 @'*='> + TOT — Tt} . @)

The other boundary condition is the condition of a finite ® at the tube axis,

The thermal conductivity A;(x) consists of the molecular component and the turbulent component, the
latter being calculated from the coefficient of turbulent viscosity according to [2, 3]. In dimensionless form
M(x) is ,

1 -+ ax (e — x), 0 <x<q
1, a<x 1,

A lx) = {

where o = 1-6,/R¢, 8§, denotes the thickness of the laminar sublayer, and constant g depends on the pro-
cess characteristics.

Since this is the form of function Ay(x), it is logical to solve the problem for two regions: the laminar
sublayer (I) and the remaining region (II) where both transfer mechanisms are operative, whereupon to
couple both solutions smoothly at the edge of the laminar sublayer,

I.a =x=1, q&) ~1and Eq. (6) becomes

1 d de > 8
—— e x|} = —exp 8. 8
X dx ( dx | o P - (8)
For (8) we find two solutions, by a substitution proposed in [16], but one of them can be shown not
to yield a smooth overall solution for the entire tube and, therefore, must be discarded. Finally, for the
dimensionless temperature © in the laminar sublayer we have the following expression
'l/_ 2&({1)
4e(m x T exp (el Vel ’
6 =In ! — p( ~ ! ) 3 (9)
260(1")
[1—x" 7% expe V@)

where constants ¢, @ and c,(® are yet to be defined,

II. 0 <x =< . Within this region we must solve Eq. (6). The solution can be found by the method of
successive approximations. The right-hand side of the first approximation is assumed equal to zero,
equivalent to the absence of any reaction, For this case, considering that ® must be finite at the axis, we
have

0, = ¢l = const. : (10)

We next smoothly couple @ with (9), which together with the boundary condition at the tube wall (7)

yields a system of equations for determining the constants ¢, @), ¢,®), and ¢,1). Proving the existence of

a solution to this system reduces to proving the existence of a solution to a transcendental equation which,
as has turned out, is of the form in every approximation: :

}"ORT% [ O‘xn (bn - xn) (xu '_ 2) + (bn “xvl) (X,, - 2) ] ; T4 —— [E_Zo_ (_@YL_
— -+ ==

Efo axn (bn. -+ x;l) + (xn - b;z) N E }"WRK
PR A R L N Cmeee UL P B P
a"n (bn + xn) + (xn - bn) \ 8 [(Z n(bn =+ xn) + (xn - bn)] ‘
where '
20c{™ e, (12)
xn e l/ A‘D Y I)” = 2 + a—-dx—- x=a’v

* This is permissible, because the curvature of the tube wall may be disregarded.
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m; and n is the order of the approximation, This equation is solved
ot IR AN N SO Sy s, B graphically. It apparently always has a solution, if the condi-
1000 » tion
o G oam T RT3 [20,—2 +2b,]|ina]
Fig. 1. Radial temperature profile \ ExRot. [ b [ o] ] +Te>0 (13)
of a reactor tube: obtained analyti- :
cally (solid curve) and in an elec- - is satisfied.

trolytic trough (dashed curve). This criterion is valid for the given process. An evalua-

tion of x,, leads to absurd results. For further calculations,
therefore, we let xn = 0 and thus obtain the closest approximation solution to Eq. (11). Such a choice of
xp, is justified by the feasibility of following it up with an exact solution to this equation and with a smooth
overall solution for the entire tube.

The second approximation yields a logarithmic temperature profile:
6, = In{x—p| +o,ln|x—p,| 4@,
where constants oy, @y, Py, and p, characterize the process.

For the succeeding approximations we take into account the smallness of the coefficients in the log-
arithmic terms (o and a,). The calculation here is analogous, only the values of ¢y and oy are different,

The feasibility of an exact solution to Eq. (11) depends on the value of parameter by, which in fact
characterizes the gradient d®,/dx at the edge of the laminar sublayer. Considering the recurrence rela- -
tion between by, bn~, bp-y as well as the relation between these parameters and the coefficients in the
expression for @, we find that the solutjon will be exact for b,. Knowing by, we find x; from (11) and
with it all other constants, i.e., we obtain the following temperature profile of the mainstream:

@ =o,njx—p|-+aln [ % — po} - opx -1 e,
where o is the determining coefficient. The calculation cannot be continued further by this method, since
oy becomes now sufficiently large (as a result of a sudden jump in bn).

The analytical solution obtained here implies an appreciable temperature drop along the radius of a
reactor tube (about 75°C), which agrees with the result obtained in an electrolytic trough [18}], but this tem-
perature drop is not uniform: about 25-30°C across the thermal sublayer, although the latter is only ap-
proximately 210~ m thick in a tube of radius Ry = 6.2 1072 m, A

It is to be noted that four fifths of the total temperature drop (about 60°C) occurs along one tenth of
the radius, while the remaining temperature drop (about 15°C) occurs along the rest of the radius.
Temperature profiles obtained analytically and in an electrolytic trough are shown in Fig, 1.

Evidently, the electrolytic trough yielded a value for the temperature difference within the main-
stream which was too high, because the thermal conductivity there had been simulated [18] on the basis
of its mean values, :

NOTATION
r is the radius of any point from the center;
T is the temperature;
dp is the total molar heat of reaction;
E is the activation energy;
T, is the temperature of the heating gases;
O is the thickness of the tube wall;
Rt  is the tube radius; ; v
Ao is the molecular component of thermal conductivity;
My is the thermal conductivity of the wall material;

R is the universal gas constant;
" is the Stefan—Boltzmann constant,
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